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Abstract

We classify in this paper infinitesimal quasitrivial deformations of semisimple bihamiltonian struc-
tures of hydrodynamic type.
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1. Introduction

A bihamiltonian structure of hydrodynamic type defined on the formal loop space of a
manifoldM consists of two compatible Poisson brackets of the form

{ui(x), uj(y)} = gij(u(x))δ′(x− y) + Γ
ij

k (u(x))ukxδ(x− y), i, j = 1, . . . , n. (1)

Heren = dimM and det(gij(u)) �= 0. Such type of Poisson brackets were introduced and
classified by Dubrovin and Novikov during the 1980s of the last century[10–12], they were
used to describe the hamiltonian structures of systems of hydrodynamic type. According
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to the theory of Dubrovin and Novikov, the inverse of (gij) must be a flat metric (here the
‘metric’ is not required to be positive definite) of the manifoldM, and the coefficientsΓ ij

k

be given by the contravariant components of the Levi–Civita connection of this metric. Two
such Poisson brackets corresponding to two flat metrics (g

ij

1 )−1, (gij2 )−1 are compatible if
these two metrics form a flat pencil[9]. The most well-known examples of bihamiltonian
structures of hydrodynamic type are possessed by the Whitham equations (in particular, the
dispersionless limit) of integrable evolutionary PDEs of KdV type[10–12,26].

In the present paper we study the problem of classification of deformations of a given
bihamiltonian structure of hydrodynamic type, these deformations depend on a parameter
ε which is called the dispersion parameter. The deformed bihamiltonian structure has the
form

{ui(x), uj(y)}a = gija (u(x))δ′(x− y) + Γ
ij

k;a(u(x))ukxδ(x− y)

+
∑
m≥1

m+1∑
l=0

εmA
ij

m,l;a(u, ux, . . . , u
(m+1−l))δ(l)(x− y), a = 1,2.

(2)

HereAijm,l;a are homogeneousdifferential polynomialsof degreem+ 1 − l, i.e. they depend

polynomially on the jet coordinatesui,m = ∂mx u
i, m ≥ 1 with the assignment of degree

degui,m = m, and the coefficients of these polynomials are smooth functions ofu1, . . . , un.
The class of bihamiltonian structures of the form(2) that satisfy some additional conditions
is classified in[14]. These additional conditions include the so called tau-symmetry property
and the property of linearization of the Virasoro symmetries of the corresponding hierarchy
of bihamiltonian evolutionary PDEs, they ensure the existence of tau functions for solutions
of the hierarchy and the possibility of representing the Virasoro symmetries of the hierarchy
by the action of an infinite number of linear differential operators on the tau functions. Under
the assumption of semisimplicity that will be explained below, the moduli space of this class
of bihamiltonian structures corresponds to that of the semisimple Frobenius manifolds[14].
Here we will study the class of deformed bihamiltonian structures of the form(2) without
the restriction of these additional properties.

The bihamiltonian structures of hydrodynamic type under our considerations are assumed
to be semisimple, i.e. the matrix (gij2 (u) − λg

ij

1 (u)) is nondegenerate for anyλ ∈ R near any

generic point ofM, and the eigenvalues of the matrix (g
ij

1 )−1g
ij

2 are pairwise distinct, here

(gij1 )−1, (gij2 )−1 are the flat metrics corresponding to the given bihamiltonian structure. The
simplest example of semisimple bihamiltonian structures of hydrodynamic type has the
form

{u(x), u(y)}1 = δ′(x− y), {u(x), u(y)}2 = u(x)δ′(x− y) + 1
2u(x)′δ(x− y),

(3)

it is the dispersionless limit of the bihamiltonian structure of the KdV hierarchy[21,27,29].
In [25] Lorenzoni studied its deformations at the approximation up toε4. He showed that the
equivalence classes of all such deformations are parameterized by a smooth functions(u),
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the bihamiltonian structure of the KdV hierarchy corresponds to the special deformation
with a nonzero constants(u). Here the equivalence relation between deformations of a
bihamiltonian structures of hydrodynamic type is defined in[14], two deformations of the
form (2) are defined to be equivalent if they are related by a Miura transformation

ui �→ ui +
∑
k≥1

εkFi
k(u; ux, . . . , u

(k)), i = 1, . . . , n, (4)

whereFi
k are homogeneousdifferential polynomialsof degreek, note that they are not

required to depend polynomially onu1, . . . , un. In particular, a deformation(2) is defined to
be trivial if it is equivalent to the undeformed bihamiltonian structure. For the above example,
when the functions(u) does not vanish, the corresponding deformation of the bihamiltonian
structure(3) is nontrivial. Nevertheless, Lorenzoni proved that at the approximation up to
ε4 all such deformations arequasitrivial. The notion of quasitriviality was also introduced
in [14], a deformed bihamiltonian structure of the form(2) is called quasitrivial if it can be
obtained from the undeformed one by a transformation of the form

ui �→ ui +
∑
k≥1

εkGi
k(u; ux, . . . , u

(mk)), i = 1, . . . , n. (5)

Here each functionGi
k depends rationally on the jet coordinatesux, . . . , u(mk) for cer-

tain positive integermk and is homogeneous of degreek. In [14] it was proved that all
semisimple bihamiltonian structures of the form(2) that satisfy the tau-symmetry prop-
erty are quasitrivial. The method given there can in fact be employed to prove the qua-
sitriviality of all deformations of(3). These results suggest that quasitriviality could hold
true for any deformation(2) of a semisimple bihamiltonian structure of hydrodynamic
type.

In this paper we will restrict ourselves to study properties of quasitrivial deformations and
leave the discussion on the validity of quasitriviality for any deformation of a semisimple
bihamiltonian structure of hydrodynamic type to subsequent publications. The main result
of the paper is contained in the following two theorems.

Theorem 1. Any two quasitrivial deformations of a semisimple bihamiltonian structure of
hydrodynamic type are equivalent if and only if they are equivalent at the approximation
up toε2.

The property of semisimplicity and the results of[17,28] imply the existence of a local
coordinate system near any generic point ofM under which the bihamiltonian structure of
hydrodynamic type has the expressions(42)–(44), we call them the canonical coordinates
of the semisimple bihamiltonian structure.

Theorem 2. At the approximation up toε2, the space of the equivalence classes of all
quasitrivial deformations of a semisimple bihamiltonian structure of hydrodynamic type is
parameterized by n smooth functionsc1(u1), . . . , cn(un) of its canonical coordinates.

We will prove the above theorems by classifying the infinitesimal quasitrivial defor-
mations of a given semisimple bihamiltonian structure of hydrodynamic type, it amounts
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to the calculation of certain modification of the second bihamiltonian cohomology. The
notion of bihamiltonian cohomology was introduced in[14], it provides an efficient tool
to study deformations of bihamiltonian structures of hydrodynamic type. As a direct con-
sequence of the calculation that will be performed in Section4, we have the following
corollary.

Corollary 1. The equivalence classes of infinitesimal quasitrivial deformations of a
semisimple bihamiltonian structure of hydrodynamic type are parameterized by n arbitrary
functions of one variable.

The above results will be understood as to be valid locally near any generic point of
the manifoldM. We will first recall the notions of Poisson cohomology and bihamiltonian
cohomology in Sections2 and 3respectively, and then give the proof of the main results in
Section4, some examples will be given in Section5.

2. Local Poisson structures and Poisson cohomologies

Let U be a connected open subset ofR
n. In this section we recall briefly the definition

of local Poisson structures and Poisson cohomologies that was presented in[14] on the
loop spaceL(U) = {smooth maps fromS1 toU} which is treated formally in the spirit of
formal variational calculus of[6,8]. For detailed exposition of the following notations see
the second chapter of[14] and references therein. Letu1, . . . , un be a coordinate system
onU, denote byA the ring of differential polynomials of the form

f (u, ux, . . .) =
∑

i1,s1,...,im,sm

fi1,s1;...;im,sm (u)ui1,s1 · · · uim,sm.

Hereu = (u1, . . . , un), u(s) = (u1,s, . . . , un,s) with ui,s = ∂sxu
i(x), and the coefficients of

these differential polynomials are smooth functions onU. Denote

A0 = A/R, A1 = A0 dx, Λ = A1/dA0,

where the operator d :A0 → A1 is defined by

f �→ df =
(∑ ∂f

∂ui,s
ui,s+1

)
dx.

Elements ofΛ are called local functionals on the formal loop space, they will be expressed
symbolically as

f̄ =
∫
f (u(x), ux(x), . . . , u(N)(x)) dx. (6)

In particular, we have
∫

dg = 0 for any functiong(u, ux, . . . , u(m)) on the formal loop
space. Later in Section4 we will also use functionals of the above form with densitiesf
being smooth functions of their arguments instead of being differential polynomials.
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A local k-vector on the formal loop space is defined to be a formal infinite sum of the
following form:

α =
∑ 1

k!
∂s1x1

· · · ∂skxkAi1···ik
∂

∂ui1,s1(x1)
∧ · · · ∧ ∂

∂uik,sk (xk)
(7)

with the coefficientsA’s having the expression

Ai1···ik =
∑

p2,...,pk≥0

Bi1···ikp2···pk (u(x1), ux(x1), . . .)δ(p2)(x1 − x2) · · · δ(pk)(x1 − xk). (8)

HereBi1···ikp2···pk (u(x1), ux(x1), . . .) ∈ A, and

Ai1···ik = Ai1···ik (x1, . . . , xk; u(x1), . . . , u(xk), . . .) (9)

are antisymmetric with respect to the simultaneous permutationsip, xp ↔ iq, xq. These
coefficientsAi1···ik are called the components of the localk-vectorα. The space of all such
localk-vectors is denoted byΛk

loc. In particular, a local vector field on the formal loop space
has the form

ξ =
n∑
i=1

∑
s≥0

∂sxξ
i(u(x); ux(x), . . .)

∂

∂ui,s(x)
(10)

which is also called a translation (alongx) invariant evolutionary vector field. A local
bivector takes the form

ω = 1

2

∑
∂sx∂

t
yω

ij ∂

∂ui,s(x)
∧ ∂

∂uj,t(y)
(11)

with

ωij = Aij(x− y; u(x), ux(x), . . .) =
∑
k≥0

A
ij

k (u(x); ux(x), . . .)δ(k)(x− y). (12)

The spaceΛ0
loc is identified with the space of local functionals.

On the space of local multi-vectors

Λ∗
loc = Λ0

loc ⊕Λ1
loc ⊕Λ2

loc ⊕ · · · (13)

there is defined a bilinear operation of Schouten–Nijenhuis bracket

[, ] : Λk
loc ×Λl

loc → Λk+l−1
loc , k, l ≥ 0. (14)

By definition, the Schouten–Nijenhuis bracket of any two elements ofΛ0
loc is equal to zero,

and that of a local vector fieldξ of the form(10) with a local functionalf̄ of the form(6)
is defined by

[ξ, f̄ ] =
∫ ∑

(∂sxξ
i)
∂f (u(x), ux(x), . . .)

∂ui,s
dx =

∫ n∑
i=1

ξi
δf̄

δui(x)
dx, (15)
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where the variational derivatives are defined by

δf̄

δui(x)
=
∑
s≥0

(−1)s∂sx

(
∂f

∂ui,s

)
, i = 1, . . . , n. (16)

The Schouten–Nijenhuis bracket of two local vector fields is given by their usual commutator

[ξ, η] =
∑(

ξj,t
∂ηi,s

∂uj,t
− ηj,t

∂ξi,s

∂uj,t

)
∂

∂ui,s
=
∑

∂sx

(
ξj,t

∂ηi

∂uj,t
− ηj,t

∂ξi

∂uj,t

)
∂

∂ui,s

(17)

and components of the Schouten–Nijenhuis bracket of a bivectorω of the forms(11) and
(12) with a local functionalf̄ and with a local vector filedξ of the form(10) are given
respectively by

[ω, f̄ ]i =
∑
j,k

A
ij

k ∂
k
x

δf̄

δuj(x)
, (18)

[ω, ξ]ij =
∑
k,t

(
∂txξ

k(u(x); . . .)
∂Aij

∂uk,t(x)
− ∂ξi(u(x); . . .)

∂uk,t(x)
∂txA

kj

− ∂ξj(u(y); . . .)

∂uk,t(y)
∂tyA

ik

)
. (19)

The Schouten–Nijenhuis bracket satisfies the following antisymmetry property and the
graded Jacobi identity:

[a, b] = (−1)kl[b, a], (20)

(−1)km[[a, b], c] + (−1)kl[[b, c], a] + (−1)lm[[c, a], b] = 0 (21)

for any multi-vectorsa ∈ Λk
loc, b ∈ Λl

loc, c ∈ Λm
loc.

Definition 1 (Dubrovin and Zhang[14]). A local bivectorω ∈ Λ2
loc of the form(11) is

called a local Poisson structure on the formal loop spaceL(U) if [ω,ω] = 0.

A local Poisson structure given by a bivector of the form(11)can be represented by the
Poisson bracket of local functionals

{f̄ 1, f̄ 2} =
∫ ∑

k≥0

δf̄ 1

δui(x)
A
ij

k (u(x); ux(x), . . .)∂kx
δf̄ 2

δuj(x)
dx. (22)

It also has the following symbolic representation:

{ui(x), uj(y)} =
∑
k≥0

A
ij

k (u(x); ux(x), . . .)δ(k)(x− y). (23)

There is a natural gradation on the spaceA of differential polynomials

degui,m = m, m ≥ 1, degf (u) = 0. (24)
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It extends to a gradation on the space of local multi-vectors through the following definition:

deg
∂

∂x
= 1, deg

∂

∂ui,s
= −s, degδ(s)(x− y) = s+ 1. (25)

To separate monomials of different degree in a local multi-vector, we introduce a formal
indeterminateε and assign to it the degree−1. Denote

Λk
m = {a ∈ Λk

loc| dega = m}, Λ̂k = {a ∈ Λk
loc ⊗ C[[ε], ε−1]| dega = k}. (26)

For a homogeneous elementf (u, ux, . . . , u(m)) of A0 we define the degree of the corre-
sponding element̄f ∈ Λ0

loc by degf̄ = degf − 1. For example, an element ofΛ̂0 has the
form

f̄ =
∫ (

ε−1f0(u(x)) +
n∑
k=1

f1,k(u(x))ukx + · · ·
)

dx. (27)

The components of a vector fieldξ ∈ Λ̂1 has the form

ξi = ε−1ai(u) +
n∑
k=1

bik(u)ukx + ε


 n∑
k=1

cik(u)ukxx +
n∑

k,l=1

eikl(u)ukxu
l
x


+ · · · . (28)

A Poisson structureω ∈ Λ2
2 is of hydrodynamic type and has the representation of the form

(1), any Poisson structure of the formω + P(ε) ∈ Λ̂2 with P(ε) = ∑
k≥1 ε

kPk, Pk ∈ Λ2
k+2

is called a deformation ofω.
The space

Λ̂ = Λ̂0 ⊕ Λ̂1 ⊕ Λ̂2 ⊕ · · · (29)

is closed with respect to the Schouten–Nijenhuis bracketε[, ], and a Poisson structure
ω ∈ Λ̂2 defines a differential

ε∂ : Λ̂k → Λ̂k+1, ε∂a = ε[ω, a], a ∈ Λ̂k. (30)

The cohomology of the complex (Λ̂, ε∂) is called the Poisson cohomology of the Poisson
structureω, and is denoted byH∗(L(U), ω). It is a natural generalization of the notion of
Poisson cohomology for finite dimensional Poisson structures[24].

3. Bihamiltonian structures and bihamiltonian cohomologies

Assume that on the formal loop spaceL(U) of a ballU in R
n we are given two Poisson

structuresω1, ω2 of hydrodynamic type with components of the form

ωija = gija (u)δ′(x− y) + Γ
ij

k,a(u)ukxδ(x− y), det(gija ) �= 0, a = 1,2. (31)

If the linear combinationωλ = ω2 − λω1 is also a Poisson structure of the above form for
an arbitrary parameterλ ∈ R, then the pair (ω1, ω2) is called a bihamiltonian structure of
hydrodynamic type. These two Poisson structures define two complexes (Λ̂, ε∂a), a = 1,2.
It is proved in[7,22] that the Poisson cohomologiesH∗(L(U), ωa), a = 1,2 are trivial (also
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see[14] for a different proof of triviality for the first and the second Poisson cohomologies).
Thus any deformationωa + P(ε) ∈ Λ̂2 of a single Poisson structureωa can be obtained
fromωa by performing a Miura transformation of the form(4). Instead of the deformations
of a single Hamiltonian structure, we are interested in deformations of the bihamiltonian
structure (ω1, ω2). Due to the triviality of the Poisson cohomologyH∗(L(U), ω1), we can
always assume that our deformations keep the first Poisson structureω1 unchanged.

Definition 2. The pair of bivectors
ω1, ω2 +

∑
m≥1

εmPm


 , Pm ∈ Λ2

m+2 (32)

is called a deformation of the bihamiltonian structure (ω1, ω2) if the equality
ω2 +

∑
m≥1

εmPm − λω1, ω2 +
∑
m≥1

εmPm − λω1


 = 0 (33)

holds true for an arbitrary parameterλ. It is called anNth order deformation of the bihamil-
tonian structure (ω1, ω2) if the equality(33) holds true for an arbitrary parameterλ at the
approximation up toεN .

Definition 3. We say that two deformations (of orderN) of the bihamiltonian structure
(ω1, ω2) are equivalent or quasi-equivalent if they are related (resp. at the approximation up
to εN ) by a Miura transformation(4) or by a quasi-Miura transformation(5). A deformation
(of orderN) of the bihamiltonian structure (ω1, ω2) is called trivial or quasitrivial if it is
equivalent or quasi-equivalent to (ω1, ω2) (resp. at the approximation up toεN ).

Due to the above definition, for aNth order deformation(32) the bivectorsPm must
satisfy the conditions

∂1Pm = 0, 1 ≤ m ≤ N, (34)

∂2P1 = 0, 2∂2Pm +
m−1∑
k=1

[Pk, Pm−k] = 0, 2 ≤ m ≤ N. (35)

Here the differentials∂1, ∂2 are defined by the Poisson structuresω1 andω2 respectively as
in (30), they act on the subspacesΛk

m as

∂a : Λk
m → Λk+1

m+2, k ≥ 0, m ≥ k − 1, a = 1,2. (36)

The notion of bihamiltonian cohomologiesHk = ⊕m≥k−1H
k
m, k ≥ 0 for (ω1, ω2) is intro-

duced in[14], they are defined by

Hk
m(L(U);ω1, ω2) = Ker(∂1∂2|Λk−1

m
)/Im(∂1|Λk−2

m−2
) ⊕ Im(∂2|Λk−2

m−2
), k ≥ 2,

H1
m(L(U);ω1, ω2) = Ker(∂1∂2|Λ0

m
),

H0
m(L(U);ω1, ω2) = Ker(∂1|Λ0

m
) ∩ Ker(∂2|Λ0

m
). (37)
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It was proved in[14] that the zeroth cohomologiesH0
m(L(U);ω1, ω2) correspond to

the space of common Casimirs of the Poisson structuresω1, ω2, the first cohomologies
H1
m(L(U);ω1, ω2) correspond to the space of bihamiltonian vector fields, and the second

cohomologiesH2
m(L(U);ω1, ω2) correspond to the space of infinitesimal deformations of

the bihamiltonian structure modulo the trivial deformations caused by Miura transforma-
tions. Below we list some other simple propositions on the second and third cohomologies.

Proposition 1.

(1) The bihamiltonian cohomologiesH2
i (L(U);ω1, ω2) vanish forK + 1 ≤ i ≤ N iff any

class of deformations of the bihamiltonian structure(ω1, ω2) of orders ≤ N is uniquely
determined by the corresponding class of deformations of order K.

(2) The bihamiltonian cohomologiesH2
2k+1(L(U);ω1, ω2) vanish for1 ≤ 2k + 1 ≤ N iff

any deformation of the bihamiltonian structure(ω1, ω2) is equivalent to a deformation
of the form(32)with P2l+1 = 0, 2l+ 1 ≤ N.

Proof. Let us first assume thatH2
i (L(U);ω1, ω2) vanishes forK + 1 ≤ i ≤ N. We need

to prove that any two deformations of orders ≤ N of the form
ω1, ω2 +

K∑
m=1

εmPm +
s∑

m=K+1

εmP (l)
m


+O(εs+1), l = 1,2 (38)

are equivalent. By using the identities in(34) and (35)we can findX, Y ∈ Λ1
K+1 such that

P
(1)
K+1 = ∂1X, P

(2)
K+1 = ∂1Y.

From(35) it follows that

∂2∂1(X− Y ) = 0.

So our assumption implies the existence ofI, J ∈ Λ0
K−1 such that

X = Y + ∂1I + ∂2J.

Thus after the Miura transformation

ui �→ exp(−εK+1∂1J)ui

the first deformed bihamiltonian structure
ω1, ω2 +

K∑
m=1

εmPm +
s∑

m=K+1

εmP (1)
m


+O(εs+1)
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is transformed to
ω1, ω2 +

K∑
m=1

εmPm + εK+1P
(2)
K+1 +

s∑
m=K+2

εmP̃ (1)
m


+O(εs+1).

By repeating the same procedure, we prove the equivalence of the two deformations of(38).
Now we assume that any class of deformations of the bihamiltonian structure (ω1, ω2)

of orders ≤ N is uniquely determined by the corresponding class of deformations of order
K. For any

X ∈ Ker(∂1∂2|Λ1
s
), K + 1 ≤ s ≤ N

we have asth order deformation of the form

(ω1, ω2 + εs∂1X). (39)

It follows from our assumption that there exists a Miura type transformation

ui �→ ui +
s∑

j=1

εjAij, Aj ∈ Λ1
j

that transforms the bihamiltonian structure (ω1, ω2) to (39), i.e.,

ω1 = e−εsadÃs · · · e−εadÃ1ω1 +O(εs+1),

ω2 + εs∂1X = e−εsadÃs · · · e−εadÃ1ω2 +O(εs+1). (40)

Here we represent, moduloεs+1, the Miura transformation as the composition of the one
parameter transformation groupsu �→ eε

kÃku, k = 1, . . . , s corresponding to the vector
fields

Ãi1 = Ai1, Ãi2 = Ai2 − 1

2

n∑
j=1

∑
t≥0

∂Ai1

∂uj,t
∂txA

j

1, . . . .

From the identities in(40)we obtain

∂1Ãs = 0, ∂2Ãs = ∂1X.

The first equality yields the existence ofI ∈ Λ0
s−2 such that̃As = ∂1I, and from the second

equality it follows thatX ∈ Im(∂1|Λ0
s−2

) ⊕ Im(∂2|Λ0
s−2

). Thus we proved the first part of the

proposition. The second part can be proved in a similar way. The proposition is proved.�

Proposition 2. If the bihamiltonian cohomologyH3
N+3(L(U);ω1, ω2) vanishes then any

Nthorder deformationof thebihamiltonianstructure(ω1, ω2)canbeextended toanN + 1th
order deformation.
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Proof. Any Nth order deformation can be represented as

(
ω1, ω2 +

N∑
i=1

εi∂1Xi

)
+O(εN+1), Xi ∈ Λ1

i .

In order to extend it to a deformation of orderN + 1 we need to find a local vector field
XN+1 ∈ Λ1

N+1 such that

∂1∂2XN+1 = 1

2

N∑
i=1

[∂1Xi, ∂1XN+1−i]. (41)

Denote byQ the r.h.s. of the above equation. Then by using the graded Jacobi identity(21)
of the Schouten–Nijenhuis bracket and the equalities

∂1∂2Xm = 1

2

m−1∑
i=1

[∂1Xi, ∂1Xm−i], m = 1, . . . , N

we obtain

∂1Q = ∂2Q = 0.

So there existsR ∈ Λ2
N+3 such thatQ = ∂1R. Now it follows from the equality∂1∂2R = 0

and our assumption of the proposition that

R = ∂1A+ ∂2B, A,B ∈ Λ1
N+1.

So Eq.(41)now takes the form

∂1∂2XN+1 = ∂1(∂1A+ ∂2B)

and it has a solutionXN+1 = B. The proposition is proved.�

Due to the above propositions, the problem of classification of deformations of the
hydrodynamic bihamiltonian structures is reduced to the computation of bihamiltonian
cohomologies. We can also consider certain modification of the bihamiltonian cohomology
in order to deal with quasitrivial deformations of the hydrodynamic bihamiltonian structures,
we will do this in the next section.

4. Computation of a modified bihamiltonian cohomology and the proof of the
main theorems

We consider in this section the problem of classification of infinitesimal quasitrivial
deformations of a semisimple bihamiltonian structure (ω1, ω2) on the formal loop space of
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U with components of the form(31). HereU is defined as in Section3. Since our study is
in a local nature, we may adjustU to a sufficiently small neighborhood of a generic point
of the bihamiltonian structure to ensure the existence onU a coordinate systemu1, . . . , un,
called the canonical coordinates of the semisimple bihamiltonian structure, such that both
metricsgij1 andgij2 are diagonal under these coordinates, and the identitiesgii2 = ui gii1 hold
true[17,28]. In terms of these coordinates the bihamiltonian structure can be expressed as

ω
ij

1 = f iδijδ′(x− y) + 1
2f

i
xδ
ijδ(x− y) + Aijδ(x− y), (42)

ω
ij

2 = gi δijδ′(x− y) + 1
2g

i
x δ

ijδ(x− y) + Bijδ(x− y). (43)

Heref i = f i(u1, . . . , un), gi = uif i, f ix = ∂xf
i, gix = ∂xg

i, and

Aij = 1

2

(
f i

f j
f
j
i u

j
x − f j

f i
f iju

i
x

)
, Bij = 1

2

(
uif i

f j
f
j
i u

j
x − ujf j

f i
f iju

i
x

)
, (44)

wherefab = ∂f a

∂ub
.

Denote byΩ the space of local functionals of the form

f̄ =
∫
f (u, ux, . . . , u

(m)) dx,

wheref is a smooth function of all of its arguments. Define

Ĥ2(L(U);ω1, ω2) = ⊕m≥1Ĥ
2
m,

Ĥ2
m = H2

m(L(U);ω1, ω2) ∩ (∂1Ω⊕ ∂2Ω). (45)

ThenĤ2 is the space of equivalence classes of infinitesimal quasitrivial deformations of the
bihamiltonian structure (ω1, ω2). In fact, an infinitesimal deformation of the bihamiltonian
structure (ω1, ω2) can be represented in the form (ω1, ω2 + ε∂1X) by a local vector fieldX
satisfying∂1∂2X = 0. Quasitriviality implies the existence of a vector fieldYwith compo-
nentsYi that depend rationally on the jet coordinatesu(m),m ≥ 1 such that the infinitesimal
deformation is obtained from the original bihamiltonian structure by the infinitesimal quasi-
Miura transformation

ui �→ ui − εYi, i = 1, . . . , n. (46)

So the vector fieldYmust satisfy∂1Y = 0, ∂2Y = ∂1X, and consequently the vector field
X can be represented as∂2I − ∂1J , I, J ∈ Ω. Conversely, from the result of the following
theorem we know that any element ofĤ2 represents an equivalence class of quasitrivial
infinitesimal deformation of the bihamiltonian structure.

Theorem 3. We haveĤ2
m = 0 for m = 1,3,4, . . . and

Ĥ2
2 =

{
n∑
i=1

(
∂1

∫
(uici(u

i)uix log uix) dx− ∂2

∫
(ci(u

i)uix log uix) dx

)}
. (47)
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Here∂1, ∂2 are the differentials defined by the Poisson structuresω1 andω2 respectively,
ci(ui) are arbitrary smooth functions ofui. Moreover, two sets of functions{ci} and {c̃i}
define the same element inĤ2 iff ci = c̃i.

We will use the symbol

A(u, ux, . . . , u
(N)) ∼ B(u, ux, . . . , u

(N))

to indicate that the difference of the functionsA andB is a differential polynomial. In order
to prove the above theorem we first need to prove some lemmas.

Lemma 1. LetX = ∂2I − ∂1J ∈ Ĥ2 with

I =
∫
G(u, ux, . . . , u

(N)) dx, J =
∫
H(u, ux, . . . , u

(N)) dx, N ≥ 2.

Then the densities G, H can be chosen to have the form

G ∼
n∑
i=1

(ui,N )2

uix
Pi(u; ux, . . . , u

(N−2); ui,N−1) +Q(u, . . . , u(N−1)), (48)

H ∼
n∑
i=1

(ui,N )2

uix
uiPi(u; ux, . . . , u

(N−2); ui,N−1) + R(u, . . . , u(N−1)). (49)

HerePi(u; ux, . . . , u(N−2); ui,N−1) are differential polynomials,Q,R are smooth functions,
and any nonzero differential polynomialPi(u; ux, . . . , u(N−2); ui,N−1) is indivisible byuix.

Proof. Denote byXi, i = 1, . . . , n the components of the local vector fieldX, from our
assumption we know that they are differential polynomials. We are to use this property
repeatedly to prove the lemma. Let us start with the polynomiality of∂X

i

∂uj,2N+1 . Denote

Xi
j,m = ∂Xi

∂uj,m
, Gi,p;j,q = ∂2G

∂ui,p∂uj,q
, Hi,p;j,q = ∂2H

∂ui,p∂uj,q
.

By using the simple identity

∂

∂ui,k
∂mx =

m∑
l=0

(
m

l

)
∂lx

∂

∂ui,k−m+l

and the forms(42) and (43)of the bihamiltonian structure (ω1, ω2) we obtain the following
formulae:

(−1)NXi
j,2N+1 = giGi,N;j,N − f iHi,N;j,N. (50)

It follows that the functionsG andH satisfy the relations

uiGi,N;j,N −Hi,N;j,N ∼ 0, (ui − uj)Gi,N;j,N ∼ 0. (51)
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So there exist smooth functionsai, bi, c, such that

G ∼
n∑
i=1

ai(u, . . . , u
(N−1), ui,N ),

H ∼
n∑
i=1

(uiai(u, . . . , u
(N−1), ui,N ) + bi(u, . . . , u

(N−1))ui,N ) + c(u, . . . , u(N−1)).

By substituting these expressions into the relations (−1)N ∂Xi

∂ui,2N
∼ 0 we obtain

−
(
N + 1

2

)
f iuix

∂2ai

∂ui,N∂ui,N
∼ 0.

Thus we can find differential polynomialspi(u, . . . , u(N−1), ui,N ) and smooth functions
qi(u, . . . , u(N−1)), ri(u, . . . , u(N−1)) such that

ai = pi(u, . . . , u(N−1), ui,N )

uix
+ qi(u, . . . , u

(N−1))ui,N + ri(u, . . . , u
(N−1)).

Now the functionsG, H can be written in the form

G ∼
n∑
i=1

(
pi(u, . . . , u(N−1), ui,N )

uix
+ qi(u, . . . , u

(N−1))ui,N
)

+ r(u, . . . , u(N−1)),

(52)

H ∼
n∑
i=1

(
ui
pi(u, . . . , u(N−1), ui,N )

uix
+ si(u, . . . , u

(N−1))ui,N
)

+ e(u, . . . , u(N−1)).

(53)

Heresi, eare some smooth functions. In the above expression ofG, H, we assume that the
differential polynomialspi do not contain terms that are linear and constant with respect to
ui,N , such terms can be absorbed into the functionsqiu

i,N, siu
i,N andr, e.

Assuming the forms(52) and (53)of the functionsG,H we continue to use the polyno-
miality of (−1)N ∂Xi

∂uj,2N
with i �= j to obtain

ui(Gi,N;j,N−1 −Gj,N;i,N−1) − (Hi,N;j,N−1 −Hj,N;i,N−1) ∼ 0.

From these relations it follows that for indicesi �= j we have

Hi,N;j,N−1 −Hj,N;i,N−1 ∼ 0, Gi,N;j,N−1 −Gj,N;i,N−1 ∼ 0, (54)

Gi,N;i,N;j,N−1 −Gi,N;i,N−1;j,N ∼ Gi,N;i,N;j,N−1 ∼ 0. (55)
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The relation(55)shows that we can adjust the differential polynomialspi so that they have
the form

pi = pi(u, . . . , u
(N−2), ui,N−1, ui,N ), i = 1, . . . , n.

Now by substituting the expression(53) for the functionH into the first relation of(54)we
arrive at

∂si

∂uj,N−1
− ∂sj

∂ui,N−1
∼ 0,

by using the Poincaré lemma we can find differential polynomialsŝ1, . . . , ŝn such that the
identity

∂(si − ŝi)

∂uj,N−1
− ∂(sj − ŝj)

∂ui,N−1
= 0

hold true. This identity implies the existence of a functionW(u, . . . , u(N−1)) satisfying

si ∼ ∂W

∂ui,N−1
, i = 1, . . . , n.

So by adjusting the densityH of the functionalJ to H − ∂xW we can assume that in the
expression(53)for the functionH the second term

∑n
i=1 siu

i,N does not appear. In a similar
way, we can also assume that the term

∑n
i=1 qiu

i,N in the expression(52)of the density of
the functionalI vanishes.

Finally, the relation (−1)N ∂2Xi

∂ui,2N−1∂ui,N
∼ 0 implies that

N2

2

f iuixx

uix

∂3pi

∂ui,N∂ui,N∂ui,N
∼ 0, i = 1, . . . , n. (56)

So we can adjust the densitiesG, H of the functionalsI, J so that they have the forms(48)
and (49). The lemma is proved.�

Let us introduce the operators

Zmij =
∑
p≥m

(−1)p
(
p

m

)
∂2

∂ui,p∂uj,2N+m−p , 1 ≤ i, j ≤ n, m ≥ 0.

It is easy to verify that these operators satisfy the identities [∂x, Z
m
ij ] = Zm−1

ij and, moreover,
we have the following lemma.

Lemma 2. For a functionalI = ∫
G(u, u(1), . . .) dx, denote

Ik = δI

δuk
, k = 1, . . . , n. (57)
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Then for any indices i, j,m, the following formulae hold true:

Zmij Ik =
∑
s≥0

(
s+m

s

)
(−∂x)s ∂

∂uk,s+m

(
∂Ii

∂uj,2N

)
.

Proof. It is well known from the theory of variational calculus that for any functionalI we
have the following identities:

∂

∂ui,p

(
δI

δuk

)
=
∑
t≥p

(−1)t
(
t

p

)
∂t−px

∂

∂uk,t

(
δI

δui

)
.

From which it follows that

∂2Ik

∂ui,p∂uj,2N+m−p =
∑
s≥0

∑
t≥p

(−1)s+t
(
s+ t

p

)(
s+ t − p

s

)
∂sx

∂2Ii

∂uk,s+t∂uj,2N+m−t .

By using this identity we obtain

Zmij Ik =
∑
p≥0

(−1)p
(
p

m

)
∂2Ik

∂ui,p∂uj,2N+m−p

=
∑
p≥0

(−1)p
(
p

m

)∑
s≥0

∑
t≥p

(−1)s+t
(
s+ t

p

)(
s+ t − p

s

)
∂sx

∂2Ii

∂uk,s+t∂uj,2N+m−t

=
∑
s≥0

(−∂x)s
∑
t≥0

(−1)t
(
s+ t

s

) t∑
p=0

(−1)p
(
p

m

)(
t

p

) ∂2Ii

∂uk,s+t∂uj,2N+m−t

=
∑
s≥0

(−∂x)s
(
s+m

s

)
∂2Ii

∂uk,s+m∂uj,2N
.

Here we assumed

(
p

m

)
= 0 whenp ≤ m− 1 and we used the identity

t∑
p=0

(−1)p
(
p

m

)(
t

p

)
= (−1)tδtm.

The lemma is proved.�
Lemma 3. The polynomialsPi defined inLemma 1must vanish.

Proof. Let m be the highest order of thex-derivatives ofu1, . . . , un that appear in the
polynomialsPi. We first prove, by using the polynomiality ofZm−1

ij Xk, thatmmust be less



S.-Q. Liu, Y. Zhang / Journal of Geometry and Physics 54 (2005) 427–453 443

than 3. To this end, let us assume at the moment thatm ≥ 3. From the forms(42) and (43)
of the bihamiltonian structure (ω1, ω2) we know that the components of the vector field
X = ∂2I − ∂1J can be expressed as

Xk = gk∂x
δI

δuk
+ ∂xg

k

2

δI

δuk
+

n∑
α=1

Bkα
δI

δuα
− f k∂x

δJ

δuk
− ∂xf

k

2

δJ

δuk
−

n∑
α=1

Akα
δJ

δuα
.

Since the highest order of thex-derivatives ofup that appear inδI
δuk

is 2N, we have

Zm−1
ij Xk = gk(∂xZ

m−1
ij − Zm−2

ij )Ik + ∂xg
k

2
Zm−1
ij Ik +

n∑
α=1

BkαZm−1
ij Iα

− f k(∂xZ
m−1
ij − Zm−2

ij )Jk − ∂xf
k

2
Zm−1
ij Jk −

n∑
α=1

AkαZm−1
ij Jα.

HereIk, Jk are defined as in(49). By usingLemmas 1 and 2we know that

∂Ii

∂uj,2N
∼ (−1)N

2Pi

uix
δij

and

Zm−1
ij Ik ∼

(
∂

∂uk,m−1
−m∂x

∂

∂uk,m

)
∂Ii

∂uj,2N
,

Zm−2
ij Ik ∼

(
∂

∂uk,m−2
− (m− 1)∂x

∂

∂uk,m−1
+ m(m− 1)

2
∂2
x

∂

∂uk,m

)
∂Ii

∂uj,2N
.

We can get similar expression forZm−1
ij Jk andZm−2

ij Jk. By using these formulae, we see that

for the casei = j �= k the term with the highest power of1
uix

in the expression ofZm−1
ij Xk

is given by

(−1)N2m(m+ 1)f k(ui − uk)
(uixx)

2

(uix)3
∂Pi

∂uk,m
. (58)

From the fact thatPi is indivisible byuix andZm−1
ii Xk is a differential polynomial it follows

thatPi does not depend onuk,m for k �= i. In the case wheni = j = k we have

Zm−1
ij Xk ∼ (−1)N+1m2f i

uixx

uix

∂Pi

∂ui,m
. (59)

SoPi does not depend onui,m either. Thus we proved that the highest orderm of thex-
derivatives ofu1, . . . , un that appear in the polynomialPi must be less than 3. To complete
the proof of the lemma we use the polynomiality ofZ1

ijX
k. In the same way as we did above,

we can prove that the terms(58) for the case ofm = 2 is a differential polynomial, soPi
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does not depend onukxx for i �= k. Then the counterpart of(59) for the case ofm = 2 has
the form

Z1
iiX

i ∼ (−1)N+1f i

uix

(
4uixx

∂Pi

∂uixx
+ (2N − 2)Pi

)
(60)

which impliesPi = 0. The lemma is proved.�
Now we can prove the main result of this section.

Proof of Theorem 3. By using the above lemma, we know that for any element ofĤ2 we
can choose its representativeX ∈ Ker(∂1∂2) of the form

X = ∂2I − ∂1J, I =
∫
G(u, ux) dx, J =

∫
H(u, ux) dx. (61)

Then the polynomiality of

∂Xi

∂uj,3
= f i

∂2H

∂uix∂u
j
x

− gi
∂2G

∂uix∂u
j
x

(62)

allows us to adjust the vector fieldX such that the functionsG andH have the expression

G =
n∑
i=1

hi(u
1, . . . , un, uix), H =

n∑
i=1

uihi(u
1, . . . , un, uix). (63)

By using the identity

∂Xi

∂uixx
= 3

2
f iuix

∂2hi

∂uix∂u
i
x

(64)

we see that the functionshi must take the form

hi = −ci(u)uix log uix + differential polynomial. (65)

Now from the explicit form of ∂X
i

∂u
j
xx

we know that

(ui − uj)
∂cj

∂ui
log ujx (66)

are differential polynomials, thus we have∂cj
∂ui

= 0 for i �= j, andci depend only onui. So

we proved that any element ofĤ2 has a representative of the form given in the right hand
side of(47).

On the other hand, given any vector fieldXwith the form given in the right hand side of
(47), we can easily verify that its components have the expressions

Xi = −
n∑
j=1

[(
1

2
δij∂xf

i + Aij
)
cju

j
x + (2δijf

i − Lij)∂x(cju
j
x)

]
. (67)

Here

Lij = 1

2
δijf

i + (ui − uj)f i

2f j
∂f j

∂ui
. (68)
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It shows thatXi are differential polynomials and thusX is a representative of an element of
Ĥ2.

Finally, we are left to show that a vector fieldX of the form given in the right hand side
of (47) is trivial if and only if c1 = · · · = cn = 0. From the expression(67) it follows that
the triviality of the vector fieldX is equivalent to the existence of functionsαi(u), βi(u),
i = 1, . . . , n such that the vector fieldsX can be expressed asX̃ = ∂2Ĩ − ∂1J̃ , where the
functionalsĨ andJ̃ have the form

Ĩ =
∫ n∑

i=1

αi(u)uix dx, J̃ =
∫ n∑

i=1

βi(u)uix dx. (69)

The coefficient ofuixx of theith component ofX is given by−3
2f

ici, while that ofX̃ equals
zero. Thus we must haveci = 0, i = 1, . . . , n. The theorem is proved.�
Proof of Theorems 1 and 2.Let us assume that the hydrodynamic bihamiltonian structure
(ω1, ω2) has twoNth order quasitrivial deformations of the form(

ω1, ω2 +
N∑

m=1

εmPm

)
+O(εN+1), (70)

(
ω1, ω2 +

N∑
m=1

εmPm + εNQ

)
+O(εN+1). (71)

HerePm ∈ Λ̂2
m+2, Q ∈ Ω2

N+2. Due to our assumption, we can find a quasi-Miura trans-
formation of the form(5) that transforms the bihamiltonian structure(70) to (ω1, ω2) +
O(εN+1). Then this same quasi-Miura transformation transforms the bihamiltonian struc-
ture(71) to

(ω1, ω2 + εNQ) +O(εN+1). (72)

It is also a quasitrivial deformation of the bihamiltonian structure (ω1, ω2), so we are able
to find a quasi-Miura transformation that transforms (ω1, ω2) to (72). Such a quasi-Miura
transformation can be represented by some vector fieldsY1, . . . , YN in the form

ω1 = e−εNadYN · · · e−εadY1ω1 +O(εN+1),

ω2 + εNQ = e−εNadYN . . .e−εadY1ω2 +O(εs+1). (73)

From the above identities it follows that∂1YN = 0, Q+ ∂2YN = 0, so there exists a
functional I such thatYN = ∂1I, Q = ∂1∂2I. On the other hand, the compatibility of
(ω1, ω2 + εNQ) +O(εN+1) implies the existence of a vector fieldX ∈ Λ̂1

N satisfying
Q = ∂1X. From the above two expressions ofQ we see that we can express the vector
fieldX as

X = ∂2I − ∂1J

with certain functionalJ ∈ Ω.
Now the results ofTheorem 3lead to the following conclusions:
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1. If N �= 2, thenI andJmust be differential polynomials, so the two deformations(70)
and (71)are related by a Miura transformation

u �→ u− εN∂1∂2I. (74)

Thus we provedTheorem 1.
2. Any second order deformation (ω1, ω2 + εP1 + ε2P2) +O(ε3) is equivalent to a second

order deformation of the form (ω1, ω2 + ε2P̃2) +O(ε3). By applying the results of
Theorem 3to the case withN = 2, we see that modulo a Miura transformation the
deformed bihamiltonian structure can be represented in the form

(ω1, ω2 + ε2∂1(∂2I − ∂1J)) +O(ε3) (75)

for some functionalsI, J defined by

I = −
∫ n∑

i=1

ci(u
i)uix log uix dx, J = −

∫
uici(u

i)uix log uix dx. (76)

On the other hand, it is easy to see that any functionalsI, J of the above form define a
second order quasitrivial deformation of the bihamiltonian structure (ω1, ω2). Theorem 2
is proved.
From the proof of the main theorems it follows that any equivalence class of quasitrivial

infinitesimal deformations of the bihamiltonian structure (ω1, ω2) has a unique representa-
tive of the forms(75) and (76)which corresponds to an element of the modified cohomology
Ĥ2.

5. Some examples

In this section, we consider as examples the deformations of the bihamiltonian structures
of hydrodynamic type that are related to the KdV and the nonlinear Schrödinger equations,
these deformations yield the bihamiltonian structures for the Camassa–Holm hierarchy
[2,3,18–20]and its generalization.

Let us first consider deformations of the bihamiltonian structure(3). The class of de-
formations that corresponds to the element ofĤ2 (seeTheorem 3) with c(u) = 1

24 has a
representative

{u(x), u(y)}1 = δ′(x− y),

{u(x), u(y)}2 = u(x)δ′(x− y) + 1
2u(x)′δ(x− y) + 1

8ε
2δ′′′(x− y). (77)

Here we redenoteu1 = u, c1(u) = c(u). It is just the well-known bihamiltonian structure
for the KdV hierarchy[21,27,29]. Now if we takec(u) = 1

24u, then the corresponding class
of deformations has the following representative:

{u(x), u(y)}1 = δ′(x− y) − ε2

8
δ′′′(x− y),

{u(x), u(y)}2 = u(x)δ′(x− y) + 1
2u(x)′δ(x− y). (78)
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In fact, it is equivalent to the bihamiltonian structure

(ω1, ω2 + ε2∂1(∂2I − ∂1J)) +O(ε3) (79)

under the Miura transformation

u �→ u+ ε2

16
u′′.

Here (ω1, ω2) denotes the bihamiltonian structure(3)and the functionalsI andJare defined
by

I = − 1

24

∫
u(x)u′(x) log u′(x) dx, J = − 1

24

∫
u(x)2u′(x) log u′(x) dx.

The related bihamiltonian hierarchy of integrable systems is the Camassa–Holm hierar-
chy that is well known in soliton theory. It can be expressed by the following bihamiltonian
recursion relations:

∂u

∂tq
= {u(x), Hq}1 = 2

2q+ 1
{u(x), Hq−1}2, q ≥ 0. (80)

Here we start from the CasimirH−1 = ∫
u(x) dx of the first Poisson bracket, and then

determine the HamiltoniansHq, q ≥ 0 recursively from the above relation. The recursive
procedure of finding the HamiltoniansHq is guaranteed by the triviality of the first Poisson
cohomology of the Poisson structureω1 [7,14,22]. The first nontrivial flow ∂

∂t
= ∂

∂t1
of the

hierarchy can be put into the form(
v− ε2

8
vxx

)
t

= vvx − ε2

12
vxvxx − ε2

24
vvxxx. (81)

Here the dependent variablev is defined by

u = v− 1
8ε

2vxx. (82)

If we change the time variable ast1 �→ t = −1
3t

1 and putε2 = 8, then the resulting equation
is just the Camassa–Holm shallow water wave equation[2,3,18–20], which possesses most
of the important properties of an integrable system. In particular, it has the following Lax
pair representation

ε2φxx =
(

2 − 8v− ε2vxx

2λ

)
φ, (83)

φt = 1

3
(λ+ v)φx − vx

6
φ (84)

and its initial value problems can be solved by using the inverse scattering method. The
Camassa–Holm equation also possesses some features that are distinguished from the usual
KdV-type integrable systems, such as the existence of peaked solitons, the nonlinear de-
pendence of the arguments of its algebraic-geometric solutions on the spatial variablex [1]
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and the nonexistence of tau function[14]. We will call Eq.(81) and the hierarchy(80) the
Camassa–Holm equation and the Camassa–Holm hierarchy respectively.

The quasitriviality of the bihamiltonian structure(77) is proved in[14] and that of(78)
can also be deduced by using the approach of[14].

For the choice of a general smooth functionc(u), we do not have at this moment an explicit
expression of the correspondent class of deformations of the bihamiltonian structure(3).
At the approximation up toε4 Lorenzoni obtained the expression of a representative of the
corresponding class of deformations, and we can in fact go further to show that his result can
be modified to reach the approximation up to higher orders ofε. This fact strongly indicates
the existence of a full deformation of the bihamiltonian structure(3) for any smooth function
c(u).

We now consider the deformations of the following bihamiltonian structure:

{w1(x), w1(y)}1 = {w2(x), w2(y)}1 = 0, {w1(x), w2(y)}1 = δ′(x− y), (85)

{w1(x), w1(y)}2 = 2δ′(x− y),

{w1(x), w2(y)}2 = w1(x)δ′(x− y) + w′
1(x)δ(x− y),

{w2(x), w2(y)}2 = [w2(x)∂x + ∂xw2(x)]δ(x− y). (86)

It is related to the Frobenius manifold with potential[5]

F = 1
2w

2
1w2 + 1

2w
2
2(log w2 − 3

2).

The canonical coordinates of this bihamiltonian structure are given by

u1,2 = w1 ± 2
√
w2. (87)

Let us consider the following two classes of deformations:
Case 1. We take the element of̂H2 with c1(u) = c2(u) = 1

24, then the corresponding
class of deformations has a representative

{w1(x), w1(y)}1 = {w2(x), w2(y)}1 = 0, {w1(x), w2(y)}1 = δ′(x− y), (88)

{w1(x), w1(y)}2 = 2δ′(x− y),

{w1(x), w2(y)}2 = w1(x)δ′(x− y) + w′
1(x)δ(x− y) − εδ′′(X− Y ),

{w2(x), w2(y)}2 = [w2(x)∂x + ∂xw2(x)]δ(x− y). (89)

To see this, let us denote byω1, ω2 the two bivectors of the bihamiltonian structures(85)
and (86), and byI, J the functionals

I = −
∫

1

24
(u1
x log u1

x + u2
x log u2

x) dx,

J = −
∫

1

24
(u1u1

x log u1
x + u2u2

x log u2
x) dx, (90)
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then by a direct computation it can be verified that the bihamiltonian structures(88) and
(89) is equivalent to the bihamiltonian structure

(ω1, ω2 + ε2∂1(∂2I − ∂1J)) +O(ε3) (91)

under the Miura transformation

w1 �→ w1 + ε

2
√

3

w2,x

w2
+ ε2

(
1

12
− 1

4
√

3

)(
w1,xx

w2
− w1,xw2,x

w2
2

)
,

w2 �→ w2 + ε

(
−1

2
+ 1

2
√

3

)
w1,x. (92)

The bihamiltonian hierarchy of integrable systems that is related to this bihamiltonian
structure is called theextended NLS hierarchy, the algebraic properties of this hierarchy
together with its relation to theCP1 topological sigma model is studied in detail in[5,15]. It
is also shown in[5] that this hierarchy is equivalent to the extended Toda hierarchy[23,30]
which contains the standard Toda lattice hierarchy.

Case 2. Let us take the element of̂H2 with c1(u) = (u1)2

24 , c2(u) = (u2)2

24 , then the corre-
spondent class of deformations has a representative of the form

{w1(x), w1(y)}1 = {w2(x), w2(y)}1 = 0,

{w1(x), w2(y)}1 = δ′(x− y) − εδ′′(x− y), (93)

{w1(x), w1(y)}2 = 2δ′(x− y),

{w1(x), w2(y)}2 = w1(x)δ′(x− y) + w′
1(x)δ(x− y),

{w2(x), w2(y)}2 = [w2(x)∂x + ∂xw2(x)]δ(x− y). (94)

Denote byI, J the functionals

I = −
∫

1

24
((u1)2u1

x log u1
x + (u2)2u2

x log u2
x) dx,

J = −
∫

1

24
((u1)3u1

x log u1
x + (u2)3u2

x log u2
x) dx, (95)

then it can be verified that the bihamiltonian structures(93) and (94)is equivalent to the
bihamiltonian structure:

(ω1, ω2 + ε2∂1(∂2I − ∂1J)) +O(ε3)

modulo a Miura transformation of the form

w1 �→ w1 + ε2

(
w2

1 + 4w2

24w2
w1,x

)
x

+O(ε3),

w2 �→ w2 + ε

(
w2

1

4
− w2

)
x

− ε2

((
w2

1 + 4w2

24w2
− 1

)
w2,x

)
x

+O(ε3).
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A hierarchy of integrable systems can be obtained by using the bihamiltonian recursion
relation

{wi(x), Hq−1}2 = (q+ 1){wi(x), Hq}1, q ≥ 0. (96)

Here we start from the CasimirH−1 = ∫
w2(x) dx of the first Poisson bracket, and then

determine the HamiltoniansHq, q ≥ 0 recursively by using the above relation. The flows
of the bihamiltonian hierarchy is then given by

∂wi

∂tq
= {wi(x), Hq}1, q ≥ 0. (97)

The first flow ∂
∂t0

corresponds to the translation along the spatial variablex, and the second

flow ∂
∂t

= ∂

∂t1
has the form

(ϕ1 − εϕ1,x)t = (ϕ2 + 1
2ϕ

2
1 − 1

2εϕ1ϕ1,x)x, (98)

(ϕ2 + εϕ2,x)t = (ϕ1ϕ2 + 1
2εϕ1ϕ2,x)x. (99)

Hereϕ1, ϕ2 are defined byw1 = ϕ1 − εϕ1,x, w2 = ϕ2 + εϕ2,x. By introducing the new
variables

v1 = ϕ1, v2 = ϕ2 + εϕ2,x − 1
4(ϕ1 − εϕ1,x)2

we can rewrite the above system of equations in the following form:

(v1 − ε2v1,xx)t = (v2 + 3
4v

2
1 − ε2( 1

2v1v1,xx + 1
4v

2
1,x))x, (100)

v2,t = 1
2v1v2,x + v2v1,x. (101)

It easily follows from the above expression that the system of equations(100) and (101)is
reduced to the Camassa–Holm equation(81)under the constraint

v2 = 0 (102)

together with the rescalingt �→ 3
2t, ε

2 �→ 1
8ε

2. So we can view the hierarchy(97) as a
natural two-component generalization of the Camassa–Holm hierarchy(80). The following
Lax pair formalism of the systems(100) and (101)manifests the above observation:

ε2φxx =
(

1

4
− v1 − ε2v1,xx

2λ
− v2

λ2

)
φ, (103)

φt = 1
2(λ+ v1)φx − 1

4v1,xφ. (104)

When we putv2 = 0 this Lax pair is reduced to the one that is given in(83) and (84).
The quasitriviality of the bihamiltonian structures(88) and (89)can be verified by

using the method given in[14]. However, at this moment we do not have a proof
for the quasitriviality of the bihamiltonian structures(93) and (94). In order to use
the approach of[14] to prove its quasitriviality we need to construct a bihamiltonian
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hierarchy of the form(97) that corresponds to the Casimir
∫
w1(x) dx of the first Pois-

son bracket, since this functional is also a Casimir of the second Poisson bracket, the usual
bihamiltonian recursion procedure fails to yield the needed Hamiltonians in a direct way.

6. Concluding remarks

For Any semisimple bihamiltonian structure of hydrodynamic type, we classify its in-
finitesimal quasitrivial deformations. We show that the equivalence classes of its second
order quasitrivial deformations are parameterized byn arbitrary functions of one variable,
and we prove that any class of its quasitrivial deformations is uniquely determined by its
corresponding class of second order deformations. We end this paper with the following
two remarks.

Remark 1. At a first glance the condition of quasitriviality seems to be highly nontriv-
ial, however, a careful study shows that any deformation of the semisimple bihamiltonian
structure of the forms(42) and (43)is quasitrivial at least for the case ofn = 1, this fact
together with the quasitriviality of any tau-symmetric bihamiltonian structure[14] indicates
the validity of quasitriviality for any deformation of the semisimple bihamiltonian structure
of the forms(42) and (43). An even more optimistic conjecture is the existence of a full
deformation of a semisimple bihamiltonian structure of hydrodynamic type with a given
second order deformation.

Remark 2. On the formal loop space of any semisimple Frobenius manifold there is defined
a semisimple bihamiltonian structure of hydrodynamic type[9], a class of deformations of
such bihamiltonian structure was constructed in[14], these deformations correspond to the
element of the second cohomologyĤ2 with c1 = · · · = cn = 1

24, they are compatible with
the universal identities satisfied by the Gromov–Witten invariants of smooth projective
varieties, for this reason we call them the topological deformations. The corresponding
bihamiltonian hierarchy of integrable systems satisfies, in the sense of[14], the properties
of tau-symmetry and linearization of the Virasoro symmetries. If we drop the requirement
of linearization of the Virasoro symmetries, then the resulting tau symmetric bihamiltonian
structure must correspond to an element of the second cohomologyĤ2 with constantc1(u) =
c1, . . . , cn(u) = cn. An example of such bihamiltonian structures is given by the one that
is obtained by using the Drinfeld–Sokolov construction for the affine Lie algebra of type
B2 [4,13,16], in this case the corresponding element of the second cohomologyĤ2 is
determined by the constant functionsc1 = 1

6, c2 = 1
12.
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